|  Help  |  About  |  Contact Us

Publication : ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice.

First Author  Wijesekara N Year  2016
Journal  Diabetologia Volume  59
Issue  6 Pages  1242-6
PubMed ID  26970755 Mgi Jnum  J:234723
Mgi Id  MGI:5790745 Doi  10.1007/s00125-016-3907-6
Citation  Wijesekara N, et al. (2016) ABCA1 deficiency and cellular cholesterol accumulation increases islet amyloidogenesis in mice. Diabetologia 59(6):1242-6
abstractText  AIMS/HYPOTHESIS: Islet amyloid, a pathological feature of type 2 diabetes, forms from the aggregation of islet amyloid polypeptide (IAPP), a beta cell peptide that is produced and co-secreted with insulin. Cholesterol regulates amyloid-beta processing, deposition and clearance, promoting amyloidogenesis in the brain. ATP-binding cassette transporter 1 (ABCA1) is a cholesterol efflux transporter that when absent increases and when overexpressed reduces brain amyloid-beta deposition in mouse models of Alzheimer's disease. We examined whether alterations in ABCA1 expression and islet cholesterol content could also modulate islet amyloidogenesis. METHODS: Thioflavin S staining for amyloid was performed in islets isolated from mice with beta cell expression of human IAPP (hIAPP (Tg/o)) and cultured for 8 days following cholesterol loading, microRNA-33 overexpression (to reduce ABCA1 expression) or palmitate treatment in the presence or absence of ABCA1 overexpression or mevastatin treatment (to reduce cholesterol synthesis). hIAPP (Tg/o) mice were crossed with beta cell-specific Abca1-knockout mice (hIAPP (Tg/o) Abca1 (betaKO)) and glucose tolerance and amyloid formation were assessed. RESULTS: Cholesterol loading and microRNA-33-induced reduction in islet ABCA1 expression increased Thioflavin S-positive amyloid in hIAPP (Tg/o) islets. Palmitate treatment also increased amyloid formation and this was reduced by both ABCA1 overexpression and mevastatin treatment. hIAPP (Tg/o) Abca1 (betaKO) mice had increased islet cholesterol, accompanied by fasting hyperglycaemia, glucose intolerance, impaired in vivo insulin secretion and an increased islet proinsulin:insulin ratio. Amyloid area was increased in cultured hIAPP (Tg/o) Abca1 (betaKO) islets compared with hIAPP (Tg/o) controls. CONCLUSIONS/INTERPRETATION: These data suggest that elevations in islet cholesterol may lead to increases in IAPP aggregation and islet amyloid formation, further worsening beta cell function and glucose homeostasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression