|  Help  |  About  |  Contact Us

Publication : FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation.

First Author  Wang Z Year  2020
Journal  Nucleic Acids Res Volume  48
Issue  7 Pages  3525-3541
PubMed ID  32086523 Mgi Jnum  J:294629
Mgi Id  MGI:6451320 Doi  10.1093/nar/gkaa101
Citation  Wang Z, et al. (2020) FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res 48(7):3525-3541
abstractText  Germ-cell transcription factors control gene networks that regulate oocyte differentiation and primordial follicle formation during early, postnatal mouse oogenesis. Taking advantage of gene-edited mice lacking transcription factors expressed in female germ cells, we analyzed global gene expression profiles in perinatal ovaries from wildtype, FiglaNull, Lhx8Null and Sohlh1Null mice. Figla deficiency dysregulates expression of meiosis-related genes (e.g. Sycp3, Rad51, Ybx2) and a variety of genes (e.g. Nobox, Lhx8, Taf4b, Sohlh1, Sohlh2, Gdf9) associated with oocyte growth and differentiation. The absence of FIGLA significantly impedes meiotic progression, causes DNA damage and results in oocyte apoptosis. Moreover, we find that FIGLA and other transcriptional regulator proteins (e.g. NOBOX, LHX8, SOHLH1, SOHLH2) are co-expressed in the same subset of germ cells in perinatal ovaries and Figla ablation dramatically disrupts KIT, NOBOX, LHX8, SOHLH1 and SOHLH2 abundance. In addition, not only do FIGLA, LHX8 and SOHLH1 cross-regulate each other, they also cooperate by direct interaction with each during early oocyte development and share downstream gene targets. Thus, our findings substantiate a major role for FIGLA, LHX8 and SOHLH1 as multifunctional regulators of networks necessary for oocyte maintenance and differentiation during early folliculogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Authors

6 Bio Entities

Trail: Publication

0 Expression