First Author | Morin-Surun MP | Year | 2001 |
Journal | Eur J Neurosci | Volume | 13 |
Issue | 9 | Pages | 1703-10 |
PubMed ID | 11359522 | Mgi Jnum | J:89400 |
Mgi Id | MGI:3040110 | Doi | 10.1046/j.0953-816x.2001.01547.x |
Citation | Morin-Surun MP, et al. (2001) Respiratory function in adult mice lacking the mu-opioid receptor: role of delta-receptors. Eur J Neurosci 13(9):1703-10 |
abstractText | Mice lacking the mu-opioid receptor (MOR) provide a unique model to determine whether opioid receptors are functionally interactive. Recent results have shown that respiratory depression produced by delta-opioid receptor agonists is suppressed in mice lacking the mu-opioid receptor. Here we investigated the involvement of mu- and delta-opioid receptors in the control of ventilation and mu/delta receptor interactions in brainstem rhythm-generating structures. Unrestrained MOR-/- and wild-type mice showed similar ventilatory patterns at rest and similar chemosensory responses to hyperoxia (100% O2), hypoxia (10% O2) or hypercapnia (5%CO2-95%O2). Blockade of delta-opioid receptors with naltrindole affected neither the ventilatory patterns nor the ventilatory responses to hypoxia in MOR-/- and wild-type mice. In-vitro, respiratory neurons were recorded in the pre-Botzinger complex of thick brainstem slices of MOR-/- and wild-type young adult mice. Respiratory frequency was not significantly different between these two groups. The delta2 receptor agonist deltorphin II (0.1-1.0 microM) decreased respiratory frequency in both groups whereas doses of the delta1 receptor agonist enkephalin[D-Pen2,5] (0.1-1.0 microM) which were ineffective in wild-type mice significantly decreased respiratory frequency in MOR-/- mice. We conclude that deletion of the mu-opioid receptor gene has no significant effect on ensuing respiratory rhythm generation, ventilatory pattern, or chemosensory control. In MOR-/- mice, the loss of respiratory-depressant effects of delta2-opioid receptor agonists previously observed in vivo does not result from a blunted response of delta receptors in brainstem rhythm-generating structures. These structures show an unaltered response to delta2-receptor agonists and an augmented response to delta1-receptor agonists. |