First Author | Tiwari M | Year | 2011 |
Journal | Exp Neurol | Volume | 229 |
Issue | 2 | Pages | 421-8 |
PubMed ID | 21419766 | Mgi Jnum | J:172690 |
Mgi Id | MGI:5008538 | Doi | 10.1016/j.expneurol.2011.03.009 |
Citation | Tiwari M, et al. (2011) A knockout of the caspase 2 gene produces increased resistance of the nigrostriatal dopaminergic pathway to MPTP-induced toxicity. Exp Neurol 229(2):421-8 |
abstractText | This study investigated the effect of a knockout of the caspase 2 gene on the sensitivity of murine nigral dopaminergic neurons to 1-methyl-4-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity. Female wild type (WT), heterozygous caspase 2 NL (HET) and homozygous caspase 2 null (NL) mice were treated with cumulative dosages of 0, 10, 15 or 20 mg/kg MPTP free base. Without MPTP treatment, one week later dopamine (DA) levels were not significantly different in HET or NL versus WT mice. Twenty mg/kg MPTP reduced striatal DA in WT and HET (p<0.01) but not NL mice. This same MPTP dosage regimen also induced a significantly greater decrease in tyrosine hydroxylase immunopositive (TH+) protein in striata of WT compared to NL mice (p<0.001). Subsequently, WT and NL mice were treated daily with 20 mg/kg MPTP for 3 days and 25 mg/kg MPTP for 2 additional days, and TH+ neurons in the substantia nigra (SN) were estimated using unbiased stereology. When compared to untreated WT, the numbers of TH+ neurons were significantly lower in the SN of untreated NL mice (p<0.05). Treatment with the MPTP regimen significantly reduced TH+ neurons in WT mice but not NL mice. In primary mesencephalic cultures both the cell bodies and the neuronal processes of TH immunopositive (TH+) neurons from NL embryos were significantly (p<0.001) more resistant to 10 muM MPP+ compared to WT. Following MPP+ treatment, features of apoptotic cell death were also significantly (p<0.001) more prevalent in nuclei of TH+ neurons in cultures prepared from WT versus NL mouse pups. These results suggest that caspase 2 may play a role in modulating the MPTP-induced damage to the nigrostriatal dopaminergic system. |