|  Help  |  About  |  Contact Us

Publication : Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas.

First Author  Steadman PE Year  2014
Journal  Autism Res Volume  7
Issue  1 Pages  124-37
PubMed ID  24151012 Mgi Jnum  J:293439
Mgi Id  MGI:6452889 Doi  10.1002/aur.1344
Citation  Steadman PE, et al. (2014) Genetic effects on cerebellar structure across mouse models of autism using a magnetic resonance imaging atlas. Autism Res 7(1):124-37
abstractText  Magnetic resonance imaging (MRI) of autism populations is confounded by the inherent heterogeneity in the individuals' genetics and environment, two factors difficult to control for. Imaging genetic animal models that recapitulate a mutation associated with autism quantify the impact of genetics on brain morphology and mitigate the confounding factors in human studies. Here, we used MRI to image three genetic mouse models with single mutations implicated in autism: Neuroligin-3 R451C knock-in, Methyl-CpG binding protein-2 (MECP2) 308-truncation and integrin beta3 homozygous knockout. This study identified the morphological differences specific to the cerebellum, a structure repeatedly linked to autism in human neuroimaging and postmortem studies. To accomplish a comparative analysis, a segmented cerebellum template was created and used to segment each study image. This template delineated 39 different cerebellar structures. For Neuroligin-3 R451C male mutants, the gray (effect size (ES) = 1.94, FDR q = 0.03) and white (ES = 1.84, q = 0.037) matter of crus II lobule and the gray matter of the paraflocculus (ES = 1.45, q = 0.045) were larger in volume. The MECP2 mutant mice had cerebellar volume changes that increased in scope depending on the genotype: hemizygous males to homozygous females. The integrin beta3 mutant mouse had a drastically smaller cerebellum than controls with 28 out of 39 cerebellar structures smaller. These imaging results are discussed in relation to repetitive behaviors, sociability, and learning in the context of autism. This work further illuminates the cerebellum's role in autism.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression