|  Help  |  About  |  Contact Us

Publication : Osterix regulates corticalization for longitudinal bone growth via integrin β3 expression.

First Author  Moon YJ Year  2018
Journal  Exp Mol Med Volume  50
Issue  7 Pages  1-11
PubMed ID  30022046 Mgi Jnum  J:289644
Mgi Id  MGI:6434560 Doi  10.1038/s12276-018-0119-9
Citation  Moon YJ, et al. (2018) Osterix regulates corticalization for longitudinal bone growth via integrin beta3 expression. Exp Mol Med 50(7):1-11
abstractText  Corticalization, coalescence of trabecular bone into the metaphyseal cortex, is important for the longitudinal growth of long bones. However, little is known about the molecular mechanisms controlling corticalization. To understand the molecular mechanisms underlying corticalization, we analyzed osteoblast-specific Osterix-knockout mice (Col-OMT). In control mice, corticalization was initiated after 7 postnatal days, and the number of osteoblasts in the peripheral spongiosa was increased compared to the number in the central spongiosa. In contrast, in Col-OMT mice, corticalization was delayed, and the number of osteoblasts in peripheral zones was unchanged compared to the central zone. Furthermore, femoral length was decreased in Col-OMT mice at 1 month. Because Col-OMT mice exhibited impaired matrix coalescence and osteoblast migration, we evaluated integrin signaling in Col-OMT mice. Osterix bound to the Itgb3 promoter and increased transcription of the Itgb3 gene in osteoblast cells. Interestingly, the inner and outer cortical bones were separated in Itgb3-null mice at postnatal day 7. In Itgb3-null mice, the number of osteoblasts in peripheral zones was not changed, and the femoral length was decreased. Taken together, these results indicate that Osterix regulates corticalization for longitudinal bone growth via the control of integrin beta3 expression in osteoblasts. Our findings imply that the ability to control osteoblast function during corticalization may help in the treatment of short stature.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

9 Bio Entities

Trail: Publication

0 Expression