First Author | Qi J | Year | 2015 |
Journal | Cell Stem Cell | Volume | 17 |
Issue | 5 | Pages | 597-610 |
PubMed ID | 26387755 | Mgi Jnum | J:274458 |
Mgi Id | MGI:6297209 | Doi | 10.1016/j.stem.2015.08.004 |
Citation | Qi J, et al. (2015) HDAC8 Inhibition Specifically Targets Inv(16) Acute Myeloid Leukemic Stem Cells by Restoring p53 Acetylation. Cell Stem Cell 17(5):597-610 |
abstractText | Acute myeloid leukemia (AML) is driven and sustained by leukemia stem cells (LSCs) with unlimited self-renewal capacity and resistance to chemotherapy. Mutation in the TP53 tumor suppressor is relatively rare in de novo AML; however, p53 can be regulated through post-translational mechanisms. Here, we show that p53 activity is inhibited in inv(16)(+) AML LSCs via interactions with the CBFbeta-SMMHC (CM) fusion protein and histone deacetylase 8 (HDAC8). HDAC8 aberrantly deacetylates p53 and promotes LSC transformation and maintenance. HDAC8 deficiency or inhibition using HDAC8-selective inhibitors (HDAC8i) effectively restores p53 acetylation and activity. Importantly, HDAC8 inhibition induces apoptosis in inv(16)(+) AML CD34(+) cells, while sparing the normal hematopoietic stem cells. Furthermore, in vivo HDAC8i administration profoundly diminishes AML propagation and abrogates leukemia-initiating capacity of both murine and patient-derived LSCs. This study elucidates an HDAC8-mediated p53-inactivating mechanism promoting LSC activity and highlights HDAC8 inhibition as a promising approach to selectively target inv(16)(+) LSCs. |