First Author | Sun Y | Year | 2013 |
Journal | Hum Mol Genet | Volume | 22 |
Issue | 12 | Pages | 2435-50 |
PubMed ID | 23446636 | Mgi Jnum | J:198242 |
Mgi Id | MGI:5495893 | Doi | 10.1093/hmg/ddt096 |
Citation | Sun Y, et al. (2013) Tissue-specific effects of saposin A and saposin B on glycosphingolipid degradation in mutant mice. Hum Mol Genet 22(12):2435-50 |
abstractText | Individual saposin A (A-/-) and saposin B (B-/-)-deficient mice show unique phenotypes caused by insufficient degradation of myelin-related glycosphingolipids (GSLs): galactosylceramide and galactosylsphingosine and sulfatide, respectively. To gain insight into the interrelated functions of saposins A and B, combined saposin AB-deficient mice (AB-/-) were created by knock-in point mutations into the saposins A and B domains on the prosaposin locus. Saposin A and B proteins were undetectable in AB-/- mice, whereas prosaposin, saposin C and saposin D were expressed near wild-type (WT) levels. AB-/- mice developed neuromotor deterioration at >61 days and exhibited abnormal locomotor activity and enhanced tremor. AB-/- mice (~96 days) lived longer than A-/- mice (~85 days), but shorter than B-/- mice (~644 days). Storage materials were observed in Schwann cells and neuronal processes by electron microscopy. Accumulation of p62 and increased levels of LC3-II were detected in the brainstem suggesting altered autophagy. GSL analyses by (liquid chromatography) LC/MS identified substantial increases in lactosylceramide in AB-/- mouse livers. Sulfatide accumulated, but galactosylceramide remained at WT levels, in the AB-/- mouse brains and kidneys. Brain galactosylsphingosine in AB-/- mice was ~68% of that in A-/- mice. These findings indicate that combined saposins A and B deficiencies attenuated GalCer-beta-galactosylceramidase and GM1-beta-galactosidase functions in the degradation of lactosylceramide preferentially in the liver. Blocking sulfatide degradation from the saposin B deficiency diminished galactosylceramide accumulation in the brain and kidney and galctosylsphingosine in the brain. These analyses of AB-/- mice continue to delineate the tissue differential interactions of saposins in GSL metabolism. |