|  Help  |  About  |  Contact Us

Publication : Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex.

First Author  Shah B Year  2017
Journal  Cereb Cortex Volume  27
Issue  2 Pages  1253-1269
PubMed ID  26733533 Mgi Jnum  J:241040
Mgi Id  MGI:5897528 Doi  10.1093/cercor/bhv341
Citation  Shah B, et al. (2017) Rap1 GTPases Are Master Regulators of Neural Cell Polarity in the Developing Neocortex. Cereb Cortex 27(2):1253-1269
abstractText  During the development of the mammalian neocortex, the generation of neurons by neural progenitors and their migration to the final position are closely coordinated. The highly polarized radial glial cells (RGCs) serve both as progenitor cells to generate neurons and as support for the migration of these neurons. After their generation, neurons transiently assume a multipolar morphology before they polarize and begin their migration along the RGCs. Here, we show that Rap1 GTPases perform essential functions for cortical organization as master regulators of cell polarity. Conditional deletion of Rap1 GTPases leads to a complete loss of cortical lamination. In RGCs, Rap1 GTPases are required to maintain their polarized organization. In newborn neurons, the loss of Rap1 GTPases prevents the formation of axons and leading processes and thereby interferes with radial migration. Taken together, the loss of RGC and neuronal polarity results in the disruption of cortical organization.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

29 Bio Entities

Trail: Publication

0 Expression