|  Help  |  About  |  Contact Us

Publication : Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice.

First Author  Hu J Year  2016
Journal  Sci Rep Volume  6
Pages  20484 PubMed ID  26857837
Mgi Jnum  J:251102 Mgi Id  MGI:6102406
Doi  10.1038/srep20484 Citation  Hu J, et al. (2016) Co-activation of AKT and c-Met triggers rapid hepatocellular carcinoma development via the mTORC1/FASN pathway in mice. Sci Rep 6:20484
abstractText  Activation of the AKT/mTOR cascade and overexpression of c-Met have been implicated in the development of human hepatocellular carcinoma (HCC). To elucidate the functional crosstalk between the two pathways, we generated a model characterized by the combined expression of activated AKT and c-Met in the mouse liver. Co-expression of AKT and c-Met triggered rapid liver tumor development and mice required to be euthanized within 8 weeks after hydrodynamic injection. At the molecular level, liver tumors induced by AKT/c-Met display activation of AKT/mTOR and Ras/MAPK cascades as well as increased lipogenesis and glycolysis. Since a remarkable lipogenic phenotype characterizes liver lesions from AKT/c-Met mice, we determined the requirement of lipogenesis in AKT/c-Met driven hepatocarcinogenesis using conditional Fatty Acid Synthase (FASN) knockout mice. Of note, hepatocarcinogenesis induced by AKT/c-Met was fully inhibited by FASN ablation. In human HCC samples, coordinated expression of FASN, activated AKT, and c-Met proteins was detected in a subgroup of biologically aggressive tumors. Altogether, our study demonstrates that co-activation of AKT and c-Met induces HCC development that depends on the mTORC1/FASN pathway. Suppression of mTORC1 and/or FASN might be highly detrimental for the growth of human HCC subsets characterized by concomitant induction of the AKT and c-Met cascades.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

0 Expression