|  Help  |  About  |  Contact Us

Publication : Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate.

First Author  Tian H Year  2017
Journal  Hum Mol Genet Volume  26
Issue  5 Pages  860-872
PubMed ID  28069795 Mgi Jnum  J:241596
Mgi Id  MGI:5903165 Doi  10.1093/hmg/ddx002
Citation  Tian H, et al. (2017) Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 26(5):860-872
abstractText  Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

25 Bio Entities

Trail: Publication

0 Expression