|  Help  |  About  |  Contact Us

Publication : Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia.

First Author  Chandran V Year  2017
Journal  Elife Volume  6
PubMed ID  29257745 Mgi Jnum  J:254962
Mgi Id  MGI:6110981 Doi  10.7554/eLife.30054
Citation  Chandran V, et al. (2017) Inducible and reversible phenotypes in a novel mouse model of Friedreich's Ataxia. Elife 6:e30054
abstractText  Friedreich''s ataxia (FRDA), the most common inherited ataxia, is caused by recessive mutations that reduce the levels of frataxin (FXN), a mitochondrial iron binding protein. We developed an inducible mouse model of Fxn deficiency that enabled us to control the onset and progression of disease phenotypes by the modulation of Fxn levels. Systemic knockdown of Fxn in adult mice led to multiple phenotypes paralleling those observed in human patients across multiple organ systems. By reversing knockdown after clinical features appear, we were able to determine to what extent observed phenotypes represent reversible cellular dysfunction. Remarkably, upon restoration of near wild-type FXN levels, we observed significant recovery of function, associated pathology and transcriptomic dysregulation even after substantial motor dysfunction and pathology were observed. This model will be of broad utility in therapeutic development and in refining our understanding of the relative contribution of reversible cellular dysfunction at different stages in disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression