|  Help  |  About  |  Contact Us

Publication : Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins.

First Author  Chang S Year  2007
Journal  J Leukoc Biol Volume  82
Issue  3 Pages  479-87
PubMed ID  17595379 Mgi Jnum  J:141916
Mgi Id  MGI:3820022 Doi  10.1189/jlb.0207128
Citation  Chang S, et al. (2007) Toll-like receptors 1 and 6 are involved in TLR2-mediated macrophage activation by hepatitis C virus core and NS3 proteins. J Leukoc Biol 82(3):479-87
abstractText  Hepatitis C virus (HCV) is a leading cause of end-stage liver disease through sustained inflammation of the liver produced by the host's immune system. The mechanism for HCV evasion or activation of the immune system is not clear. TLRs are cellular activators of the innate immune system. We recently reported that TLR2-mediated innate immune signaling pathways are activated by HCV core and NS3 proteins. TLR2 activation requires homo- or heterodimerization with TLR1 or TLR6. Here, we aimed to determine whether TLR2 coreceptors participated in cellular activation by HCV core or NS3 proteins. By designing small interfering RNAs targeted to TLR2, TLR1, and TLR6, we showed that knockdown of each of these receptors impairs pro- and anti-inflammatory cytokine activation by TLR-specific ligands as well as by HCV core and NS3 proteins in human embryonic kidney-TLR2 cells and in primary human macrophages. We found that HCV core and NS3 proteins induced TNF-alpha and IL-10 production in human monocyte-derived macrophages, which was impaired by TLR2, TLR1, and TLR6 knockdown. Contrary to human data, results from TLR2, TLR1, or TLR6 knockout mice indicated that the absence of TLR2 and its coreceptor TLR6, but not TLR1, prevented the HCV core and NS3 protein-induced peritoneal macrophage activation. In conclusion, TLR2 may use TLR1 and TLR6 coreceptors for HCV core- and NS3-mediated activation of macrophages and innate immunity in humans. These results imply that multiple pattern recognition receptors could participate in cellular activation by HCV proteins.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Authors

7 Bio Entities

Trail: Publication

0 Expression