First Author | Jancic D | Year | 2009 |
Journal | Cereb Cortex | Volume | 19 |
Issue | 11 | Pages | 2535-47 |
PubMed ID | 19213815 | Mgi Jnum | J:211460 |
Mgi Id | MGI:5575472 | Doi | 10.1093/cercor/bhp004 |
Citation | Jancic D, et al. (2009) Inhibition of cAMP response element-binding protein reduces neuronal excitability and plasticity, and triggers neurodegeneration. Cereb Cortex 19(11):2535-47 |
abstractText | The cAMP-responsive element-binding protein (CREB) pathway has been involved in 2 major cascades of gene expression regulating neuronal function. The first one presents CREB as a critical component of the molecular switch that controls long-lasting forms of neuronal plasticity and learning. The second one relates CREB to neuronal survival and protection. To investigate the role of CREB-dependent gene expression in neuronal plasticity and survival in vivo, we generated bitransgenic mice expressing A-CREB, an artificial peptide with strong and broad inhibitory effect on the CREB family, in forebrain neurons in a regulatable manner. The expression of A-CREB in hippocampal neurons impaired L-LTP, reduced intrinsic excitability and the susceptibility to induced seizures, and altered both basal and activity-driven gene expression. In the long-term, the chronic inhibition of CREB function caused severe loss of neurons in the CA1 subfield as well as in other brain regions. Our experiments confirmed previous findings in CREB-deficient mutants and revealed new aspects of CREB-dependent gene expression in the hippocampus supporting a dual role for CREB-dependent gene expression regulating intrinsic and synaptic plasticity and promoting neuronal survival. |