First Author | Gramage E | Year | 2013 |
Journal | Behav Brain Res | Volume | 253 |
Pages | 223-31 | PubMed ID | 23891929 |
Mgi Jnum | J:295001 | Mgi Id | MGI:6459299 |
Doi | 10.1016/j.bbr.2013.07.026 | Citation | Gramage E, et al. (2013) Regulation of extinction of cocaine-induced place preference by midkine is related to a differential phosphorylation of peroxiredoxin 6 in dorsal striatum. Behav Brain Res 253:223-31 |
abstractText | The neurotrophic factors Midkine (MK) and Pleiotrophin (PTN) have been suggested to modulate drugs of abuse-induced effects. To test this hypothesis, cocaine (10 and 15mg/kg)-induced conditioned place preference (CPP) was rendered in PTN knockout (PTN-/-), MK knockout (MK-/-) and wild type (WT+/+) mice, and then extinguished after repeated saline injections (distributed in 4 extinction sessions). Cocaine induced a similar CPP in all the three genotypes. We found a significantly increased percentage of MK-/- mice that did not extinguish cocaine CPP at the end of the extinction sessions. Particularly, 40% of MK-/- mice did not extinguish cocaine (15mg/kg)-induced CPP compared to WT+/+ and PTN-/- mice ( approximately 0-6%). Interestingly, we found that a greater magnitude of extinction of CPP after the first extinction session (5 days after last administration of cocaine) correlates with increased tyrosine phosphorylation of the enzyme peroxiredoxin 6 in the dorsal striatum of MK-/- mice. On the other hand, a greater magnitude of CPP extinction correlates with increased tyrosine phosphorylation of aconitase 2 in the prefrontal cortex of WT+/+ mice. In contrast, a lower magnitude of CPP extinction correlates with increased phosphorylation of aconitase 2 in the prefrontal cortex of PTN-/- mice, suggesting that the correlation between the tyrosine phosphorylation levels of aconitase 2 and magnitude of CPP extinction depends on the genotype considered. The data demonstrate that MK is a novel genetic factor that plays a role in the extinction of cocaine-induced CPP by mechanisms that may involve specific phosphorylation of striatal peroxiredoxin 6. |