|  Help  |  About  |  Contact Us

Publication : Hepatic Stellate Cells in Hepatocellular Carcinoma Promote Tumor Growth Via Growth Differentiation Factor 15 Production.

First Author  Myojin Y Year  2021
Journal  Gastroenterology Volume  160
Issue  5 Pages  1741-1754.e16
PubMed ID  33346004 Mgi Jnum  J:314681
Mgi Id  MGI:6823463 Doi  10.1053/j.gastro.2020.12.015
Citation  Myojin Y, et al. (2021) Hepatic Stellate Cells in Hepatocellular Carcinoma Promote Tumor Growth Via Growth Differentiation Factor 15 Production. Gastroenterology 160(5):1741-1754.e16
abstractText  BACKGROUND & AIMS: Although the tumor microenvironment plays an important role in tumor growth, it is not fully understood what role hepatic stellate cells (HSCs) play in the hepatocellular carcinoma (HCC) microenvironment. METHODS: A high-fat diet after streptozotocin was administered to HSC-specific Atg7-deficient (GFAP-Atg7 knockout [KO]) or growth differentiation factor 15 (GDF15)-deficient (GFAP-GDF15KO) mice. LX-2 cells, a human HSC cell line, were cultured with human hepatoma cells. RESULTS: In the steatohepatitis-based tumorigenesis model, GFAP-Atg7KO mice formed fewer and smaller liver tumors than their wild-type littermates. Mixed culture of LX-2 cells and hepatoma cells promoted LX-2 cell autophagy and hepatoma cell proliferation, which were attenuated by Atg7 KO in LX-2 cells. Hepatoma cell xenograft tumors grew rapidly in the presence of LX-2 cells, but Atg7 KO in LX-2 cells abolished this growth. RNA-sequencing revealed that LX-2 cells cultured with HepG2 cells highly expressed GDF15, which was abolished by Atg7 KO in LX-2 cells. GDF15 KO LX-2 cells did not show a growth-promoting effect on hepatoma cells either in vitro or in the xenograft model. GDF15 deficiency in HSCs reduced liver tumor size caused by the steatohepatitis-based tumorigenesis model. GDF15 was highly expressed and GDF15-positive nonparenchymal cells were more abundant in human HCC compared with noncancerous parts. Single-cell RNA sequencing showed that GDF15-positive rates in HSCs were higher in HCC than in background liver. Serum GDF15 levels were high in HCC patients and increased with tumor progression. CONCLUSIONS: In the HCC microenvironment, an increase of HSCs that produces GDF15 in an autophagy-dependent manner may be involved in tumor progression.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

11 Bio Entities

Trail: Publication

0 Expression