First Author | Lucas P | Year | 2003 |
Journal | Neuron | Volume | 40 |
Issue | 3 | Pages | 551-61 |
PubMed ID | 14642279 | Mgi Jnum | J:86454 |
Mgi Id | MGI:2679915 | Doi | 10.1016/s0896-6273(03)00675-5 |
Citation | Lucas P, et al. (2003) A diacylglycerol-gated cation channel in vomeronasal neuron dendrites is impaired in TRPC2 mutant mice: mechanism of pheromone transduction. Neuron 40(3):551-61 |
abstractText | Vomeronasal sensory neurons play a crucial role in detecting pheromones, but the chemoelectrical transduction mechanism remains unclear and controversial. A major barrier to the resolution of this question has been the lack of an activation mechanism of a key transduction component, the TRPC2 channel. We have identified a Ca(2+)-permeable cation channel in vomeronasal neuron dendrites that is gated by the lipid messenger diacylglycerol (DAG), independently of Ca(2+) or protein kinase C. We demonstrate that ablation of the TRPC2 gene causes a severe deficit in the DAG-gated channel, indicating that TRPC2 encodes a principal subunit of this channel and that the primary electrical response to pheromones depends on DAG but not Ins(1,4,5)P(3), Ca(2+) stores, or arachidonic acid. Thus, a previously unanticipated mechanism involving direct channel opening by DAG underlies the transduction of sensory cues in the accessory olfactory system. |