|  Help  |  About  |  Contact Us

Publication : Tbx1 regulates extracellular matrix-cell interactions in the second heart field.

First Author  Alfano D Year  2019
Journal  Hum Mol Genet Volume  28
Issue  14 Pages  2295-2308
PubMed ID  31180501 Mgi Jnum  J:277133
Mgi Id  MGI:6317130 Doi  10.1093/hmg/ddz058
Citation  Alfano D, et al. (2019) Tbx1 regulates extracellular matrix-cell interactions in the second heart field. Hum Mol Genet 28(14):2295-2308
abstractText  Tbx1, the major candidate gene for DiGeorge or 22q11.2 deletion syndrome, is required for efficient incorporation of cardiac progenitors of the second heart field (SHF) into the heart. However, the mechanisms by which TBX1 regulates this process are still unclear. Here, we have used two independent models, mouse embryos and cultured cells, to define the role of TBX1 in establishing morphological and dynamic characteristics of SHF in the mouse. We found that loss of TBX1 impairs extracellular matrix (ECM)-integrin-focal adhesion (FA) signaling in both models. Mosaic analysis in embryos suggested that this function is non-cell autonomous, and, in cultured cells, loss of TBX1 impairs cell migration and FAs. Additionally, we found that ECM-mediated integrin signaling is disrupted upon loss of TBX1. Finally, we show that interfering with the ECM-integrin-FA axis between E8.5 and E9.5 in mouse embryos, corresponding to the time window within which TBX1 is required in the SHF, causes outflow tract dysmorphogenesis. Our results demonstrate that TBX1 is required to maintain the integrity of ECM-cell interactions in the SHF and that this interaction is critical for cardiac outflow tract development. More broadly, our data identifies a novel TBX1 downstream pathway as an important player in SHF tissue architecture and cardiac morphogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

16 Bio Entities

Trail: Publication

0 Expression