|  Help  |  About  |  Contact Us

Publication : Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance.

First Author  Yokoyama K Year  2004
Journal  Eur J Neurosci Volume  20
Issue  12 Pages  3516-9
PubMed ID  15610184 Mgi Jnum  J:101267
Mgi Id  MGI:3603690 Doi  10.1111/j.1460-9568.2004.03810.x
Citation  Yokoyama K, et al. (2004) Blocking the R-type (Cav2.3) Ca2+ channel enhanced morphine analgesia and reduced morphine tolerance. Eur J Neurosci 20(12):3516-9
abstractText  Morphine is the drug of choice to treat intractable pain, although prolonged administration often causes undesirable side-effects including analgesic tolerance. It is speculated that voltage-dependent Ca(2+) channels (VDCCs) play a key role in morphine analgesia and tolerance. To examine the subtype specificity of VDCCs in these processes, we analysed mice lacking N-type (Ca(v)2.2) or R-type (Ca(v)2.3) VDCCs. Systemic morphine administration or exposure to warm water swim-stress, known to induce endogenous opioid release, resulted in greater analgesia in Ca(v)2.3(-/-) mice than in controls. Moreover, Ca(v)2.3(-/-) mice showed resistance to morphine tolerance. In contrast, Ca(v)2.2(-/-) mice showed similar levels of analgesia and tolerance to control mice. Intracerebroventricular (i.c.v.) but not intrathecal (i.t.) administration of morphine reproduced the result of systemic morphine in Ca(v)2.3(-/-) mice. Furthermore, i.c.v. administration of an R-type channel blocker potentiated morphine analgesia in wild-type mice. Thus, the inhibition of R-type Ca(2+) current could lead to high-efficiency opioid therapy without tolerance.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression