|  Help  |  About  |  Contact Us

Publication : Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum.

First Author  Jiang Q Year  2009
Journal  Neuroscience Volume  162
Issue  1 Pages  55-66
PubMed ID  19376200 Mgi Jnum  J:152937
Mgi Id  MGI:4360442 Doi  10.1016/j.neuroscience.2009.04.029
Citation  Jiang Q, et al. (2009) Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum. Neuroscience 162(1):55-66
abstractText  Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in neurodegenerative diseases. They are highly expressed in the striatum, where medium spiny neurons (MSNs) are a major population. Given that the properties of ASICs in MSNs are unknown, in this study, we characterized ASICs in MSNs of the mouse striatum. A rapid drop in extracellular pH induced transient inward currents in all MSNs. The pH value for half-maximal activation was 6.25, close to that obtained in homomeric ASIC1a channels. Based on psalmotoxin 1 and zinc sensitivity, ASIC1a (70.5% of neurons) and heteromeric ASIC1a-2 channels (29.5% of neurons) appeared responsible for the acid-induced currents in MSNs. ASIC currents were diminished in MSNs from ASIC1, but not ASIC2, null mice. Furthermore, a drop in pH induced calcium influx by activating homomeric ASIC1a channels. Activation of ASICs increased the membrane excitability of MSNs and lowering extracellular Ca2+ potentiated ASIC currents. Our data suggest that the homomeric ASIC1a channel represents a majority of the ASIC isoform in MSNs. The potential function of ASICs in the striatum requires further investigation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression