|  Help  |  About  |  Contact Us

Publication : Caveolin-1 Derived from Brain Microvascular Endothelial Cells Inhibits Neuronal Differentiation of Neural Stem/Progenitor Cells In Vivo and In Vitro.

First Author  Li Y Year  2020
Journal  Neuroscience Volume  448
Pages  172-190 PubMed ID  32976986
Mgi Jnum  J:299688 Mgi Id  MGI:6501357
Doi  10.1016/j.neuroscience.2020.09.031 Citation  Li Y, et al. (2020) Caveolin-1 Derived from Brain Microvascular Endothelial Cells Inhibits Neuronal Differentiation of Neural Stem/Progenitor Cells In Vivo and In Vitro. Neuroscience 448:172-190
abstractText  Caveolin-1 (Cav-1) is an important modulator for adult neurogenesis in post stroke brain repair but its underlying mechanisms are largely unknown. In the present study, we report that endothelial Cav-1 inhibits neuronal differentiation of neural stem/progenitor cells (NSCs/NPCs) in post ischemic brain via regulating vascular endothelial growth factor (VEGF) and NeuroD1 signaling pathway. We first investigated the dynamic change of Cav-1 and its impact on neuronal differentiation in rat and mouse models of 2h transient middle cerebral artery occlusion (MCAO) plus 1, 7, 14, 21 and 28day of reperfusion. We then studied the roles of endothelial Cav-1 in modulating the neuronal differentiation of NPCs which were co-cultured with brain microvascular endothelial cells (BMVECs) under 2h oxygen-glucose deprivation plus 5days reoxygenation (OGD/R). The major discoveries include: (1) Cav-1 expression in the hippocampal dentate gyrus (DG) was down-regulated on day 1 after 2h cerebral ischemia, and gradually recovered with reperfusion time, accompanied with transient increased but gradually reduced neuronal differentiation of NPCs marked by doublecortin (DCX). (2) Cav-1 knockout mice exhibited the increased DCX and VEGF at the granular cell layers of hippocampal DG in post-ischemic brains. (3) Co-cultured with BMVECs, NPCs had remarkably decreased neuronal differentiation under OGD/R. Knockdown of Cav-1 in the BMVECs increased VEGF secretion into the medium and NeuroD1(+) cells, and rescued the neuronal differentiation of NPCs without affecting astroglial and oligodendroglial differentiation. (4) Cav-1 exosomes released from BMVECs inhibited neuronal differentiation of NPCs via decreasing the expression of VEGF, p44/42MAPK phosphorylation and NeuronD1 upon OGD/R insults. Taken together, endothelial Cav-1 serves as a niche regulator to inhibit neuronal differentiation via negatively modulating VEGF, p44/42MAPK phosphorylation and NeuronD1 signaling pathway.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Authors

3 Bio Entities

Trail: Publication

0 Expression