First Author | Hu G | Year | 2008 |
Journal | Am J Physiol Lung Cell Mol Physiol | Volume | 294 |
Issue | 2 | Pages | L178-86 |
PubMed ID | 17993589 | Mgi Jnum | J:132206 |
Mgi Id | MGI:3775379 | Doi | 10.1152/ajplung.00263.2007 |
Citation | Hu G, et al. (2008) Neutrophil caveolin-1 expression contributes to mechanism of lung inflammation and injury. Am J Physiol Lung Cell Mol Physiol 294(2):L178-86 |
abstractText | Caveolin-1 present in immune cells may be involved in regulation of the inflammatory response. Here, using caveolin-1-null (Cav-1(-/-)) mice, we addressed the role of caveolin-1 in polymorphonuclear neutrophils (PMNs) in regulating PMN activation-mediated lung injury. In lungs of wild-type (Cav-1(+/+)) mice perfused at constant flow with Krebs-Henseleit solution, addition of Cav-1(+/+) PMNs (4 x 10(6) cells) into the perfusate followed by their activation with formyl-Met-Leu-Phe (fMLP, 1.0 muM) plus platelet-activating factor (1.0 nM) increased pulmonary microvessel filtration coefficient by 150% and wet-to-dry lung weight ratio by 50% as well as PMN accumulation in lungs. These responses were markedly reduced in lungs perfused with Cav-1(-/-) PMNs followed by addition of the same activating agents. fMLP-stimulated adhesion of Cav-1(-/-) PMNs to pulmonary microvascular endothelial cells and migration of Cav-1(-/-) PMNs across endothelial monolayers were also impaired compared with Cav-1(+/+) PMNs. Cav-1(-/-) PMNs showed 50-80% reduction in PMA- or fMLP-stimulated superoxide production compared with Cav-1(+/+) PMNs. In addition, Cav-1(-/-) PMNs had decreased migratory activity (50%) and adhesion to fibrinogen (40%) in response to fMLP. Rac1 and Rac2 were activated in Cav-1(+/+) PMNs after stimulation of fMLP but not in Cav-1(-/-) PMNs. Exogenous expression of caveolin-1 in COS-phox cells augmented the fMLP-induced Rac1 activation and superoxide production, indicating a direct role of caveolin-1 in the mechanism of superoxide production. Thus caveolin-1 expression in PMNs plays a key role in mediating PMN activation, adhesion, and transendothelial migration and in PMN activation-induced lung inflammation and vascular injury. |