First Author | Mohler PJ | Year | 2005 |
Journal | PLoS Biol | Volume | 3 |
Issue | 12 | Pages | e423 |
PubMed ID | 16292983 | Mgi Jnum | J:103813 |
Mgi Id | MGI:3610760 | Doi | 10.1371/journal.pbio.0030423 |
Citation | Mohler PJ, et al. (2005) Ankyrin-B coordinates the Na/K ATPase, Na/Ca exchanger, and InsP3 receptor in a cardiac T-tubule/SR microdomain. PLoS Biol 3(12):e423 |
abstractText | We report identification of an ankyrin-B-based macromolecular complex of Na/K ATPase (alpha 1 and alpha 2 isoforms), Na/Ca exchanger 1, and InsP3 receptor that is localized in cardiomyocyte T-tubules in discrete microdomains distinct from classic dihydropyridine receptor/ryanodine receptor 'dyads.' E1425G mutation of ankyrin-B, which causes human cardiac arrhythmia, also blocks binding of ankyrin-B to all three components of the complex. The ankyrin-B complex is markedly reduced in adult ankyrin-B(+/-) cardiomyocytes, which may explain elevated [Ca2+]i transients in these cells. Thus, loss of the ankyrin-B complex provides a molecular basis for cardiac arrhythmia in humans and mice. T-tubule-associated ankyrin-B, Na/Ca exchanger, and Na/K ATPase are not present in skeletal muscle, where ankyrin-B is expressed at 10-fold lower levels than in heart. Ankyrin-B also is not abundantly expressed in smooth muscle. We propose that the ankyrin-B-based complex is a specialized adaptation of cardiomyocytes with a role for cytosolic Ca2+ modulation. |