|  Help  |  About  |  Contact Us

Publication : I(CaL) inhibition prevents arrhythmogenic Ca(2+) waves caused by abnormal Ca(2+) sensitivity of RyR or SR Ca(2+) accumulation.

First Author  Stokke MK Year  2013
Journal  Cardiovasc Res Volume  98
Issue  2 Pages  315-25
PubMed ID  23417043 Mgi Jnum  J:211450
Mgi Id  MGI:5575462 Doi  10.1093/cvr/cvt037
Citation  Stokke MK, et al. (2013) I(CaL) inhibition prevents arrhythmogenic Ca(2+) waves caused by abnormal Ca(2+) sensitivity of RyR or SR Ca(2+) accumulation. Cardiovasc Res 98(2):315-25
abstractText  AIMS: Arrhythmogenic Ca(2+) waves result from uncontrolled Ca(2+) release from the sarcoplasmic reticulum (SR) that occurs with increased Ca(2+) sensitivity of the ryanodine receptor (RyR) or excessive Ca(2+) accumulation during beta-adrenergic stimulation. We hypothesized that inhibition of the L-type Ca(2+) current (I(CaL)) could prevent such Ca(2+) waves in both situations. METHODS AND RESULTS: Ca(2+) waves were induced in mouse left ventricular cardiomyocytes by isoproterenol combined with caffeine to increase RyR Ca(2+) sensitivity. I(CaL) inhibition by verapamil (0.5 microM) reduced Ca(2+) wave probability in cardiomyocytes during electrostimulation, and during a 10 s rest period after ceasing stimulation. A separate type of Ca(2+) release events occurred during the decay phase of the Ca(2+) transient and was not prevented by verapamil. Verapamil decreased Ca(2+) spark frequency, but not in permeabilized cells, indicating that this was not due to direct effects on RyR. The antiarrhythmic effect of verapamil was due to reduced SR Ca(2+) content following I(CaL) inhibition. Computational modelling supported that the level of I(CaL) inhibition obtained experimentally was sufficient to reduce the SR Ca(2+) content. Ca(2+) wave prevention through reduced SR Ca(2+) content was also effective in heterozygous ankyrin B knockout mice with excessive SR Ca(2+) accumulation during beta-adrenergic stimulation. CONCLUSION: I(CaL) inhibition prevents diastolic Ca(2+) waves caused by increased Ca(2+) sensitivity of RyR or excessive SR Ca(2+) accumulation during beta-adrenergic stimulation. In contrast, unstimulated early Ca(2+) release during the decay of the Ca(2+) transient is not prevented, and merits further study to understand the full antiarrhythmic potential of I(CaL) inhibition.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression