|  Help  |  About  |  Contact Us

Publication : Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory.

First Author  Huang TN Year  2019
Journal  Cell Rep Volume  29
Issue  1 Pages  34-48.e4
PubMed ID  31577954 Mgi Jnum  J:300615
Mgi Id  MGI:6488865 Doi  10.1016/j.celrep.2019.08.082
Citation  Huang TN, et al. (2019) Interhemispheric Connectivity Potentiates the Basolateral Amygdalae and Regulates Social Interaction and Memory. Cell Rep 29(1):34-48.e4
abstractText  Impaired interhemispheric connectivity is commonly found in various psychiatric disorders, although how interhemispheric connectivity regulates brain function remains elusive. Here, we use the mouse amygdala, a brain region that is critical for social interaction and fear memory, as a model to demonstrate that contralateral connectivity intensifies the synaptic response of basolateral amygdalae (BLA) and regulates amygdala-dependent behaviors. Retrograde tracing and c-FOS expression indicate that contralateral afferents widely innervate BLA non-randomly and that some BLA neurons innervate both contralateral BLA and the ipsilateral central amygdala (CeA). Our optogenetic and electrophysiological studies further suggest that contralateral BLA input results in the synaptic facilitation of BLA neurons, thereby intensifying the responses to cortical and thalamic stimulations. Finally, pharmacological inhibition and chemogenetic disconnection demonstrate that BLA contralateral facilitation is required for social interaction and memory. Our study suggests that interhemispheric connectivity potentiates the synaptic dynamics of BLA neurons and is critical for the full activation and functionality of amygdalae.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression