First Author | Yamada KH | Year | 2012 |
Journal | J Biol Chem | Volume | 287 |
Issue | 16 | Pages | 13182-93 |
PubMed ID | 22367208 | Mgi Jnum | J:184369 |
Mgi Id | MGI:5320814 | Doi | 10.1074/jbc.M111.302612 |
Citation | Yamada KH, et al. (2012) Targeted gene inactivation of calpain-1 suppresses cortical degeneration due to traumatic brain injury and neuronal apoptosis induced by oxidative stress. J Biol Chem 287(16):13182-93 |
abstractText | Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role. |