|  Help  |  About  |  Contact Us

Publication : GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear.

First Author  Lawoko-Kerali G Year  2004
Journal  Mech Dev Volume  121
Issue  3 Pages  287-99
PubMed ID  15003631 Mgi Jnum  J:88813
Mgi Id  MGI:3037230 Doi  10.1016/j.mod.2003.12.006
Citation  Lawoko-Kerali G, et al. (2004) GATA3 and NeuroD distinguish auditory and vestibular neurons during development of the mammalian inner ear. Mech Dev 121(3):287-99
abstractText  The function of the zinc finger transcription factor GATA3 was studied in a newly established, conditionally immortal cell line derived to represent auditory sensory neuroblasts migrating from the mouse otic vesicle at embryonic day E10.5. The cell line, US/VOT-33, expressed GATA3, the bHLH transcription factor NeuroD and the POU-domain transcription factor Brn3a, as do auditory neuroblasts in vivo. When GATA3 was knocked down reversibly with antisense oligonucleotides, NeuroD was reversibly down-regulated. Auditory and vestibular neurons form from neuroblasts that express NeuroD and that migrate from the antero-ventral, otic epithelium at E9.5-10.5. On the medial side, neuroblasts and epithelial cells express GATA3 but on the lateral side they do not. At E13.5 most auditory neurons express GATA3 but no longer express NeuroD, whereas vestibular neurons express NeuroD but not GATA3. Neuroblasts expressing NeuroD and GATA3 were located in the ventral, otic epithelium, the adjacent mesenchyme and the developing auditory ganglion. The results suggest that auditory and vestibular neurons arise from different, otic epithelial domains and that they gain their identity prior to migration. In auditory neuroblasts, NeuroD appears to be dependent on the expression of GATA3.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

8 Bio Entities

Trail: Publication

29 Expression

Trail: Publication