First Author | Dizhoor AM | Year | 2008 |
Journal | J Neurosci | Volume | 28 |
Issue | 45 | Pages | 11662-72 |
PubMed ID | 18987202 | Mgi Jnum | J:143197 |
Mgi Id | MGI:3823158 | Doi | 10.1523/JNEUROSCI.4006-08.2008 |
Citation | Dizhoor AM, et al. (2008) Night blindness and the mechanism of constitutive signaling of mutant G90D rhodopsin. J Neurosci 28(45):11662-72 |
abstractText | The G90D rhodopsin mutation is known to produce congenital night blindness in humans. This mutation produces a similar condition in mice, because rods of animals heterozygous (D+) or homozygous (D+/+) for this mutation have decreased dark current and sensitivity, reduced Ca(2+), and accelerated values of tau(REC) and tau(D), similar to light-adapted wild-type (WT) rods. Our experiments indicate that G90D pigment activates the cascade, producing an equivalent background light of approximately 130 Rh* rod(-1) for D+ and 890 Rh* rod(-1) for D+/+. The active species of the G90D pigment could be unregenerated G90D opsin or G90D rhodopsin, either spontaneously activated (as Rh*) or in some other form. Addition of 11-cis-retinal in lipid vesicles, which produces regeneration of both WT and G90D opsin in intact rods and ROS membranes, had no effect on the waveform or sensitivity of dark-adapted G90D responses, indicating that the active species is not G90D opsin. The noise spectra of dark-adapted G90D and WT rods are similar, and the G90D noise variance is much less than of a WT rod exposed to background light of about the same intensity as the G90D equivalent light, indicating that Rh* is not the active species. We hypothesize that G90D rhodopsin undergoes spontaneous changes in molecular conformation which activate the transduction cascade with low gain. Our experiments provide the first indication that a mutant form of the rhodopsin molecule bound to its 11-cis-chromophore can stimulate the visual cascade spontaneously at a rate large enough to produce visual dysfunction. |