First Author | Calvisi DF | Year | 2004 |
Journal | Gastroenterology | Volume | 126 |
Issue | 5 | Pages | 1374-86 |
PubMed ID | 15131798 | Mgi Jnum | J:90164 |
Mgi Id | MGI:3042644 | Doi | 10.1053/j.gastro.2004.02.014 |
Citation | Calvisi DF, et al. (2004) Disruption of beta-catenin pathway or genomic instability define two distinct categories of liver cancer in transgenic mice. Gastroenterology 126(5):1374-86 |
abstractText | Background & Aims: Human liver cancer can be divided into 2 categories that are characterized by activation of beta-catenin and genomic instability. Here we investigate whether similar categories exist among 5 transgenic models of liver cancer, including c-myc, transforming growth factor-alpha, E2F-1, c-myc/transforming growth factor-alpha, and c-myc/E2F-1 mice. Methods: The random amplified polymorphic DNA method was used to assess the overall genomic instability, and chromosomal loci affected by genomic alterations were determined by microsatellite analysis. beta-Catenin mutations and deletions were analyzed by polymerase chain reaction and sequencing screening. Cellular localization of beta-catenin and expression of alpha-fetoprotein, a prognostic marker of hepatocellular carcinoma, were investigated by immunohistochemistry. Results: Liver tumors from the transgenic mice could be divided into 2 broad categories characterized by extensive genomic instability (exemplified by the c-myc/transforming growth factor-alpha mouse) and activation of beta-catenin (exemplified by the c-myc/E2F-1 mouse). The c-myc/transforming growth factor-alpha tumors displayed extensive genomic instability with recurrent loss of heterozygosity at chromosomes 1, 2, 4, 6, 7, 9, 12, 14, and X and a low rate of beta-catenin activation. The genomic instability was evident from the early dysplastic stage and occurred concomitantly with increased expression of alpha-fetoprotein. The c-myc/E2F-1 tumors were characterized by a high frequency of beta-catenin activation in the presence of a relatively stable genome and low alpha-fetoprotein levels. Conclusions: We have identified 2 prototype experimental models, i.e., c-myc/transforming growth factor-alpha and c-myc/E2F-1 mice, for the 2 categories of human hepatocellular carcinoma characterized by genomic instability and beta-catenin activation, respectively. These mouse models will assist in the elucidation of the molecular basis of human hepatocellular carcinoma. |