|  Help  |  About  |  Contact Us

Publication : Mitochondria regulate proliferation in adult cardiac myocytes.

First Author  Waypa GB Year  2024
Journal  J Clin Invest Volume  134
Issue  13 PubMed ID  38722697
Mgi Jnum  J:359431 Mgi Id  MGI:7663863
Doi  10.1172/JCI165482 Citation  Waypa GB, et al. (2024) Mitochondria regulate proliferation in adult cardiac myocytes. J Clin Invest 134(13)
abstractText  Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

14 Bio Entities

Trail: Publication

0 Expression