First Author | Chen WK | Year | 2010 |
Journal | J Neurosci | Volume | 30 |
Issue | 31 | Pages | 10360-8 |
PubMed ID | 20685979 | Mgi Jnum | J:166291 |
Mgi Id | MGI:4844013 | Doi | 10.1523/JNEUROSCI.1041-10.2010 |
Citation | Chen WK, et al. (2010) Ca(v)3.2 T-type Ca2+ channel-dependent activation of ERK in paraventricular thalamus modulates acid-induced chronic muscle pain. J Neurosci 30(31):10360-8 |
abstractText | Treatments for chronic musculoskeletal pain, such as lower back pain, fibromyalgia, and myofascial pain syndrome, remain inadequate because of our poor understanding of the mechanisms that underlie these conditions. Although T-type Ca2+ channels (T-channels) have been implicated in peripheral and central pain sensory pathways, their role in chronic musculoskeletal pain is still unclear. Here, we show that acid-induced chronic mechanical hyperalgesia develops in Ca(v)3.1-deficient and wild-type but not in Ca(v)3.2-deficient male and female mice. We also show that T-channels are required for the initiation, but not maintenance, of acid-induced chronic muscle pain. Blocking T-channels using ethosuximide prevented chronic mechanical hyperalgesia in wild-type mice when administered intraperitoneally or intracerebroventricularly, but not intramuscularly or intrathecally. Furthermore, we found an acid-induced, Ca(v)3.2 T-channel-dependent activation of ERK (extracellular signal-regulated kinase) in the anterior nucleus of paraventricular thalamus (PVA), and prevention of the ERK activation abolished the chronic mechanical hyperalgesia. Our findings suggest that Ca(v)3.2 T-channel-dependent activation of ERK in PVA is required for the development of acid-induced chronic mechanical hyperalgesia. |