| First Author | Vieira FG | Year | 2014 |
| Journal | PLoS One | Volume | 9 |
| Issue | 12 | Pages | e91608 |
| PubMed ID | 25526593 | Mgi Jnum | J:225670 |
| Mgi Id | MGI:5694008 | Doi | 10.1371/journal.pone.0091608 |
| Citation | Vieira FG, et al. (2014) Dexpramipexole is ineffective in two models of ALS related neurodegeneration. PLoS One 9(12):e91608 |
| abstractText | Treatment options for people living with amyotrophic lateral sclerosis (ALS) are limited and ineffective. Recently, dexpramipexole (RPPX) was advanced into human ALS clinical trials. In the current studies, we investigated RPPX in two parallel screening systems: 1) appropriately powered, sibling-matched, gender-balanced survival efficacy screening in high-copy B6-SJL-SOD1G93A/Gur1 mice, and 2) high-content neuronal survival screening in primary rat cortical neurons transfected with wild-type human TDP43 or mutant human TDP43. In both cases, we exposed the test systems to RPPX levels approximating those achieved in human Phase II clinical investigations. In SOD1G93A mice, no effect was observed on neuromotor disease progression or survival. In primary cortical neurons transfected with either mutant or wild-type human TDP43, a marginally significant improvement in a single indicator of neuronal survival was observed, and only at the 10 microM RPPX treatment. These systems reflect both mutant SOD1- and TDP43-mediated forms of neurodegeneration. The systems also reflect both complex non-cell autonomous and neuronal cell autonomous disease mechanisms. The results of these experiments, taken in context with results produced by other molecules tested in both screening systems, do not argue positively for further study of RPPX in ALS. |