|  Help  |  About  |  Contact Us

Publication : Absence of the cholecystokinin-A receptor deteriorates homeostasis of body temperature in response to changes in ambient temperature.

First Author  Nomoto S Year  2004
Journal  Am J Physiol Regul Integr Comp Physiol Volume  287
Issue  3 Pages  R556-61
PubMed ID  15178543 Mgi Jnum  J:95791
Mgi Id  MGI:3527335 Doi  10.1152/ajpregu.00542.2003
Citation  Nomoto S, et al. (2004) Absence of the cholecystokinin-A receptor deteriorates homeostasis of body temperature in response to changes in ambient temperature. Am J Physiol Regul Integr Comp Physiol 287(3):R556-61
abstractText  The circadian rhythm of the body core temperature (T(c)) and the effects of changes in ambient temperatures on the homeostasis of T(c) in Otsuka Long Evans Tokushima Fatty (OLETF) rats, which are naturally occurring cholecystokinin (CCK)-A receptor (CCK-AR) gene knockout (-/-) rats, were examined. In addition, the peripheral responses to warming or cooling of the preoptic and anterior hypothalamic region (PO/AH) were determined. The circadian rhythm of T(c) in OLETF rats was similar to that in Long-Evans Tokushima (LETO) rats; this rhythm was characterized by a higher T(c) during the dark period and a lower T(c) during the light period. When the ambient temperature was changed within the limits of 0 degrees C to 30 degrees C, the changes in T(c) of LETO rats were associated with the changes in ambient temperature, whereas those in OLETF rats were dissociated from the temperature changes. The OLETF rats showed a large hysteresis. The peripheral responses to warming or cooling of PO/AH, including shivering of the neck muscle and changes in skin temperature of the tail and footpad, were similar in OLETF and LETO rats. To confirm the role of CCK-AR in the regulation of body temperature, the values of T(c) in the CCK-AR(-/-) mice were compared with those in CCK-B receptor (CCK-BR) (-/-), CCK-AR(-/-)BR(-/-), and wild-type mice. In the mice, the circadian rhythms of T(c) were the same, regardless of the genotype. Mice without CCK-AR showed larger hysteresis than mice with CCK-AR. From these results, we conclude that the lack of CCK-AR causes homeostasis of T(c) in rats and mice to deteriorate.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression