|  Help  |  About  |  Contact Us

Publication : Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice.

First Author  Park JY Year  2008
Journal  PLoS One Volume  3
Issue  6 Pages  e2346
PubMed ID  18545656 Mgi Jnum  J:137150
Mgi Id  MGI:3798119 Doi  10.1371/journal.pone.0002346
Citation  Park JY, et al. (2008) Homeostatic imbalance between apoptosis and cell renewal in the liver of premature aging Xpd mice. PLoS One 3(6):e2346
abstractText  Unrepaired or misrepaired DNA damage has been implicated as a causal factor in cancer and aging. Xpd(TTD) mice, harboring defects in nucleotide excision repair and transcription due to a mutation in the Xpd gene (R722W), display severe symptoms of premature aging but have a reduced incidence of cancer. To gain further insight into the molecular basis of the mutant-specific manifestation of age-related phenotypes, we used comparative microarray analysis of young and old female livers to discover gene expression signatures distinguishing Xpd(TTD) mice from their age-matched wild type controls. We found a transcription signature of increased apoptosis in the Xpd(TTD) mice, which was confirmed by in situ immunohistochemical analysis and found to be accompanied by increased proliferation. However, apoptosis rate exceeded the rate of proliferation, resulting in homeostatic imbalance. Interestingly, a metabolic response signature was observed involving decreased energy metabolism and reduced IGF-1 signaling, a major modulator of life span. We conclude that while the increased apoptotic response to endogenous DNA damage contributes to the accelerated aging phenotypes and the reduced cancer incidence observed in the Xpd(TTD) mice, the signature of reduced energy metabolism is likely to reflect a compensatory adjustment to limit the increased genotoxic stress in these mutants. These results support a general model for premature aging in DNA repair deficient mice based on cellular responses to DNA damage that impair normal tissue homeostasis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

4 Bio Entities

Trail: Publication

0 Expression