|  Help  |  About  |  Contact Us

Publication : PPARgamma influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis.

First Author  Nicol CJ Year  2004
Journal  Carcinogenesis Volume  25
Issue  9 Pages  1747-55
PubMed ID  15073042 Mgi Jnum  J:91958
Mgi Id  MGI:3051196 Doi  10.1093/carcin/bgh160
Citation  Nicol CJ, et al. (2004) PPAR{gamma} influences susceptibility to DMBA-induced mammary, ovarian and skin carcinogenesis. Carcinogenesis 25(9):1747-1755
abstractText  Peroxisome proliferator-activated receptor gamma (PPARgamma), a member of the nuclear receptor superfamily, plays a role in adipocyte differentiation, type II diabetes, macrophage response to inflammation and is suggested to influence carcinogen-induced colon cancer. Studies done in vitro and in vivo also revealed that PPARgamma ligands might promote differentiation and/or regression of mammary tumors. To directly evaluate the role of PPARgamma in mammary carcinogenesis, PPARgamma wild-type (+/+) or heterozygous (+/-) mice were administered 1 mg 7,12-dimethylbenz[a]anthracene (DMBA) by gavage once a week for 6 weeks and followed for a total of 25 weeks. Compared with congenic PPARgamma(+/+) littermate controls, PPARgamma(+/-) mice had early evidence for increased susceptibility to DMBA-mediated carcinogenesis based on a 1.6-fold increase in the percentage of mice with skin papillomas, as well as a 1.7-fold increase in the numbers of skin papillomas per mouse (P < 0.05). Similarly, PPARgamma(+/-) mice also had a 1.5-fold decreased survival rate (P = 0.059), and a 1.7-fold increased incidence of total tumors per mouse (P < 0.01). Moreover, PPARgamma(+/-) mice had an almost 3-fold increase in mammary adenocarcinomas (P < 0.05), an over 3-fold increase in ovarian granulosa cell carcinomas (P < 0.05), an over 3-fold increase in malignant tumors (P < 0.02) and a 4.6-fold increase in metastatic incidence. These results are the first to demonstrate an increased susceptibility in vivo of PPARgamma haploinsufficiency to DMBA-mediated carcinogenesis and suggest that PPARgamma may act as a tumor modifier of skin, ovarian and breast cancers. The data also support evidence suggesting a beneficial role for PPARgamma-specific ligands in the chemoprevention of mammary, ovarian and skin carcinogenesis.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression