First Author | Radovic Pletikosic SM | Year | 2021 |
Journal | Acta Physiol (Oxf) | Volume | 231 |
Issue | 3 | Pages | e13563 |
PubMed ID | 32975906 | Mgi Jnum | J:324079 |
Mgi Id | MGI:6751770 | Doi | 10.1111/apha.13563 |
Citation | Radovic Pletikosic SM, et al. (2021) Deficiency in insulin-like growth factors signalling in mouse Leydig cells increase conversion of testosterone to estradiol because of feminization. Acta Physiol (Oxf) 231(3):e13563 |
abstractText | AIM: A growing body of evidence pointed correlation between insulin-resistance, testosterone level and infertility, but there is scarce information about mechanisms. The aim of this study was to identify the possible mechanism linking the insulin-resistance with testosterone-producing-Leydig-cells functionality. METHODS: We applied in vivo and in vitro approaches. The in vivo model of functional genomics is represented by INSR/IGF1R-deficient-testosterone-producing Leydig cells obtained from the prepubertal (P21) and adult (P80) male mice with insulin + IGF1-receptors deletion in steroidogenic cells (Insr/Igf1r-DKO). The in vitro model of INSR/IGF1R-deficient-cell was mimicked by blockade of insulin/IGF1-receptors on the primary culture of P21 and P80 Leydig cells. RESULTS: Leydig-cell-specific-insulin-resistance induce the development of estrogenic characteristics of progenitor Leydig cells in prepubertal mice and mature Leydig cells in adult mice, followed with a dramatic reduction of androgen phenotype. Level of androgens in serum, testes and Leydig cells decrease as a consequence of the dramatic reduction of steroidogenic capacity and activity as well as all functional markers of Leydig cell. Oppositely, the markers for female-steroidogenic-cell differentiation and function increase. The physiological significances are the higher level of testosterone-to-estradiol-conversion in double-knock-out-mice of both ages and few spermatozoa in adults. Intriguingly, the transcription of pro-male sexual differentiation markers Sry/Sox9 increased in P21-Leydig-cells, questioning the current view about the antagonistic genetic programs underlying gonadal sex determination. CONCLUSION: The results provide new molecular mechanisms leading to the development of the female phenotype in Leydig cells from Insr/Igf1r-DKO mice and could help to better understand the correlation between insulin resistance, testosterone and male (in)fertility. |