|  Help  |  About  |  Contact Us

Publication : Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF).

First Author  Allardyce H Year  2020
Journal  Hum Mol Genet Volume  29
Issue  14 Pages  2365-2378
PubMed ID  32588893 Mgi Jnum  J:293802
Mgi Id  MGI:6451876 Doi  10.1093/hmg/ddaa126
Citation  Allardyce H, et al. (2020) Renal pathology in a mouse model of severe Spinal Muscular Atrophy is associated with downregulation of Glial Cell-Line Derived Neurotrophic Factor (GDNF). Hum Mol Genet 29(14):2365-2378
abstractText  Spinal muscular atrophy (SMA) occurs as a result of cell-ubiquitous depletion of the essential survival motor neuron (SMN) protein. Characteristic disease pathology is driven by a particular vulnerability of the ventral motor neurons of the spinal cord to decreased SMN. Perhaps not surprisingly, many other organ systems are also impacted by SMN depletion. The normal kidney expresses very high levels of SMN protein, equivalent to those found in the nervous system and liver, and levels are dramatically lowered by ~90-95% in mouse models of SMA. Taken together, these data suggest that renal pathology may be present in SMA. We have addressed this using an established mouse model of severe SMA. Nephron number, as assessed by gold standard stereological techniques, was significantly reduced. In addition, morphological assessment showed decreased renal vasculature, particularly of the glomerular capillary knot, dysregulation of nephrin and collagen IV, and ultrastructural changes in the trilaminar filtration layers of the nephron. To explore the molecular drivers underpinning this process, we correlated these findings with quantitative PCR measurements and protein analyses of glial cell-line-derived neurotrophic factor, a crucial factor in ureteric bud branching and subsequent nephron development. Glial cell-line-derived neurotrophic factor levels were significantly reduced at early stages of disease in SMA mice. Collectively, these findings reveal significant renal pathology in a mouse model of severe SMA, further reinforcing the need to develop and administer systemic therapies for this neuromuscular disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

7 Bio Entities

Trail: Publication

0 Expression