|  Help  |  About  |  Contact Us

Publication : Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions.

First Author  Jacobs S Year  2014
Journal  PLoS One Volume  9
Issue  10 Pages  e111865
PubMed ID  25360708 Mgi Jnum  J:223086
Mgi Id  MGI:5647946 Doi  10.1371/journal.pone.0111865
Citation  Jacobs S, et al. (2014) Molecular and genetic determinants of the NMDA receptor for superior learning and memory functions. PLoS One 9(10):e111865
abstractText  The opening-duration of the NMDA receptors implements Hebb's synaptic coincidence-detection and is long thought to be the rate-limiting factor underlying superior memory. Here, we investigate the molecular and genetic determinants of the NMDA receptors by testing the "synaptic coincidence-detection time-duration" hypothesis vs. "GluN2B intracellular signaling domain" hypothesis. Accordingly, we generated a series of GluN2A, GluN2B, and GluN2D chimeric subunit transgenic mice in which C-terminal intracellular domains were systematically swapped and overexpressed in the forebrain excitatory neurons. The data presented in the present study supports the second hypothesis, the "GluN2B intracellular signaling domain" hypothesis. Surprisingly, we found that the voltage-gated channel opening-durations through either GluN2A or GluN2B are sufficient and their temporal differences are marginal. In contrast, the C-terminal intracellular domain of the GluN2B subunit is necessary and sufficient for superior performances in long-term novel object recognition and cued fear memories and superior flexibility in fear extinction. Intriguingly, memory enhancement correlates with enhanced long-term potentiation in the 10-100 Hz range while requiring intact long-term depression capacity at the 1-5 Hz range.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

18 Bio Entities

Trail: Publication

0 Expression