First Author | Hughes MA | Year | 2005 |
Journal | Infect Immun | Volume | 73 |
Issue | 11 | Pages | 7535-40 |
PubMed ID | 16239556 | Mgi Jnum | J:104287 |
Mgi Id | MGI:3611628 | Doi | 10.1128/IAI.73.11.7535-7540.2005 |
Citation | Hughes MA, et al. (2005) MyD88-dependent signaling contributes to protection following Bacillus anthracis spore challenge of mice: implications for Toll-like receptor signaling. Infect Immun 73(11):7535-40 |
abstractText | Bacillus anthracis is a spore-forming, gram-positive organism that is the causative agent of the disease anthrax. Recognition of Bacillus anthracis by the host innate immune system likely plays a key protective role following infection. In the present study, we examined the role of TLR2, TLR4, and MyD88 in the response to B. anthracis. Heat-killed Bacillus anthracis stimulated TLR2, but not TLR4, signaling in HEK293 cells and stimulated tumor necrosis factor alpha (TNF-alpha) production in C3H/HeN, C3H/HeJ, and C57BL/6J bone marrow-derived macrophages. The ability of heat-killed B. anthracis to induce a TNF-alpha response was preserved in TLR2-/- but not in MyD88-/- macrophages. In vivo studies revealed that TLR2-/- mice and TLR4-deficient mice were resistant to challenge with aerosolized Sterne strain spores but MyD88-/- mice were as susceptible as A/J mice. We conclude that, although recognition of B. anthracis occurs via TLR2, additional MyD88-dependent pathways contribute to the host innate immune response to anthrax infection. |