First Author | Wesson DW | Year | 2013 |
Journal | Behav Brain Res | Volume | 237 |
Pages | 96-102 | PubMed ID | 23000537 |
Mgi Jnum | J:197085 | Mgi Id | MGI:5490734 |
Doi | 10.1016/j.bbr.2012.09.019 | Citation | Wesson DW, et al. (2013) Chronic anti-murine Abeta immunization preserves odor guided behaviors in an Alzheimer's beta-amyloidosis model. Behav Brain Res 237:96-102 |
abstractText | Olfaction is often impaired in Alzheimer's disease (AD) and is also dysfunctional in mouse models of the disease. We recently demonstrated that short-term passive anti-murine-Abeta immunization can rescue olfactory behavior in the Tg2576 mouse model overexpressing a human mutation of the amyloid precursor protein (APP) after beta-amyloid deposition. Here we tested the ability to preserve normal olfactory behaviors by means of long-term passive anti-murine-Abeta immunization. Seven-month-old Tg2576 and non-transgenic littermate (NTg) mice were IP-injected biweekly with the m3.2 murine-Abeta-specific antibody until 16 mo of age when mice were tested in the odor habituation test. While Tg2576 mice treated with a control antibody showed elevations in odor investigation times and impaired odor habituation compared to NTg, olfactory behavior was preserved to NTg levels in m3.2-immunized Tg2576 mice. Immunized Tg2576 mice had significantly less beta-amyloid immunolabeling in the olfactory bulb and entorhinal cortex, yet showed elevations in Thioflavin-S labeled plaques in the piriform cortex. No detectable changes in APP metabolite levels other than Abeta were found following m3.2 immunization. These results demonstrate efficacy of chronic, long-term anti-murine-Abeta m3.2 immunization in preserving normal odor-guided behaviors in a human APP Tg model. Further, these results provide mechanistic insights into olfactory dysfunction as a biomarker for AD by yielding evidence that focal reductions of Abeta may be sufficient to preserve olfaction. |