|  Help  |  About  |  Contact Us

Publication : The nuclear factor erythroid 2-related factor 2 activator oltipraz attenuates chronic hypoxia-induced cardiopulmonary alterations in mice.

First Author  Eba S Year  2013
Journal  Am J Respir Cell Mol Biol Volume  49
Issue  2 Pages  324-33
PubMed ID  23590302 Mgi Jnum  J:221771
Mgi Id  MGI:5641464 Doi  10.1165/rcmb.2011-0396OC
Citation  Eba S, et al. (2013) The nuclear factor erythroid 2-related factor 2 activator oltipraz attenuates chronic hypoxia-induced cardiopulmonary alterations in mice. Am J Respir Cell Mol Biol 49(2):324-33
abstractText  Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator that activates many antioxidant enzymes. Oxidative stress, which accumulates in diseased lungs associated with pulmonary hypertension (PH), is thought to be responsible for the progression of cardiopulmonary changes. To test whether Nrf2 activation would exert therapeutic efficacy against cardiopulmonary changes in a hypoxia-induced PH model, wild-type (WT) and Nrf2-deficient mice as well as Kelch-like ECH associating protein 1 (Keap1) (negative regulator of Nrf2) knockdown mutant mice were exposed to hypobaric hypoxia for 3 weeks. This chronic hypoxia exacerbated right ventricular systolic pressure, right ventricular hypertrophy (RVH), and pulmonary vascular remodeling in the WT mice. These pathological changes were associated with aberrant accumulation of Tenascin-C, a disease-indicative extracellular glycoprotein. Simultaneous administration of oltipraz, a potent Nrf2 activator, significantly attenuated RVH and pulmonary vascular remodeling and concomitantly ameliorated Tenascin-C accumulation in the hypoxic mice. Hypoxia-exposed Nrf2-deficient mice developed more pronounced RVH than WT mice, whereas hypoxia-exposed Keap1-knockdown mice showed less RVH and pulmonary vascular remodeling than WT mice, underscoring the beneficial potency of Nrf2 activity against PH. We also demonstrated that expression of the Nrf2-regulated antioxidant enzymes was decreased in a patient with chronic obstructive pulmonary disease associated with PH. The decreased antioxidant enzymes may underlie the pathogenesis of cardiopulmonary changes in the patient with chronic obstructive pulmonary disease and PH. The pharmacologically or genetically induced Nrf2 activity clearly decreased RVH and pulmonary vascular remodeling in the hypoxic PH model. The efficacy of oltipraz highlights a promising therapeutic potency of Nrf2 activators for the prevention of PH in patients with hypoxemic lung disease.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

5 Bio Entities

Trail: Publication

0 Expression