First Author | Chartoumpekis DV | Year | 2013 |
Journal | Oxid Med Cell Longev | Volume | 2013 |
Pages | 340731 | PubMed ID | 23710285 |
Mgi Jnum | J:318023 | Mgi Id | MGI:6855125 |
Doi | 10.1155/2013/340731 | Citation | Chartoumpekis DV, et al. (2013) Hepatic gene expression profiling in Nrf2 knockout mice after long-term high-fat diet-induced obesity. Oxid Med Cell Longev 2013:340731 |
abstractText | INTRODUCTION: The transcription factor NFE2-related factor 2 (Nrf2) is a central regulator of antioxidant and detoxification gene expression in response to electrophilic or oxidative stress. Nrf2 has recently been shown to cross-talk with metabolic pathways, and its gene deletion protected mice from high-fat-diet-(HFD-) induced obesity and insulin resistance. This study aimed to identify potential Nrf2-regulated genes of metabolic interest by comparing gene expression profiles of livers of wild-type (WT) versus Nrf2 knockout (Nrf2-KO) mice after a long-term HFD. METHODS: WT and Nrf2-KO mice were fed an HFD for 180 days; total RNA was prepared from liver and used for microarray analysis and quantitative real-time RT-PCR (qRT-PCR). RESULTS: The microarray analysis identified 601 genes that were differentially expressed between WT and Nrf2-KO mice after long-term HFD. Selected genes, including ones known to be involved in metabolic regulation, were prioritized for verification by qRT-PCR: Cyp7a1 and Fabp5 were significantly overexpressed in Nrf2-KO mice; in contrast, Car, Cyp2b10, Lipocalin 13, Aquaporin 8, Cbr3, Me1, and Nqo1 were significantly underexpressed in Nrf2-KO mice. CONCLUSION: Transcriptome profiling after HFD-induced obesity confirms that Nrf2 is implicated in liver metabolic gene networks. The specific genes identified here may provide insights into Nrf2-dependent mechanisms of metabolic regulation. |