First Author | Kladney RD | Year | 2010 |
Journal | Cancer Res | Volume | 70 |
Issue | 21 | Pages | 8937-47 |
PubMed ID | 20940396 | Mgi Jnum | J:165796 |
Mgi Id | MGI:4838476 | Doi | 10.1158/0008-5472.CAN-10-1646 |
Citation | Kladney RD, et al. (2010) Tuberous sclerosis complex 1: an epithelial tumor suppressor essential to prevent spontaneous prostate cancer in aged mice. Cancer Res 70(21):8937-47 |
abstractText | The phosphoinositide 3-kinase (PI3K) pathway regulates mammalian cell growth, survival, and motility and plays a major pathogenetic role in human prostate cancer (PCa). However, the oncogenic contributions downstream of the PI3K pathway made by mammalian target of rapamycin complex 1 (mTORC1)-mediated cell growth signal transduction in PCa have yet to be elucidated in detail. Here, we engineered constitutive mTORC1 activation in prostate epithelium by a conditional genetic deletion of tuberous sclerosis complex 1 (Tsc1), a potent negative regulator of mTORC1 signaling. Epithelial inactivation was not immediately tumorigenic, but Tsc1-deficient mice developed prostatic intraepithelial neoplasia (mPIN) in lateral and anterior prostates by 6 months of age, with increasing disease penetrance over time. Lateral prostate lesions in 16- to 22-month-old mutant mice progressed to two types of more advanced lesions, adenomatous gland forming lesion (Type 1) and atypical glands embedded in massively expanded reactive stroma (Type 2). Both Type 1 and Type 2 lesions contained multiple foci of microinvasive carcinoma. Epithelial neoplastic and atypical stromal lesions persisted despite 4 weeks of RAD001 chemotherapy. Rapalogue resistance was not due to AKT or extracellular signal-regulated kinase 1/2 activation. Expression of the homeobox gene Nkx3.1 was lost in Tsc1-deficient mPIN, and it cooperated with TSC1 loss in mPIN initiation in doubly mutant Tsc1:Nkx3.1 prostatic epithelial knockout mice. Thus, TSC1 inactivation distal to PI3K and AKT activation is sufficient to activate a molecular signaling cascade producing prostatic neoplasia and focal carcinogenesis. |