|  Help  |  About  |  Contact Us

Publication : MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge.

First Author  Manchanda K Year  2018
Journal  Arterioscler Thromb Vasc Biol Volume  38
Issue  8 Pages  1859-1867
PubMed ID  29903730 Mgi Jnum  J:285104
Mgi Id  MGI:6385408 Doi  10.1161/ATVBAHA.118.311143
Citation  Manchanda K, et al. (2018) MPO (Myeloperoxidase) Reduces Endothelial Glycocalyx Thickness Dependent on Its Cationic Charge. Arterioscler Thromb Vasc Biol 38(8):1859-1867
abstractText  Objective- The leukocyte heme-enzyme MPO (myeloperoxidase) exerts proinflammatory effects on the vascular system primarily linked to its catalytic properties. Recent studies have shown that MPO, depending on its cationic charge, mediates neutrophil recruitment and activation. Here, we further investigated MPO's extracatalytic properties and its effect on endothelial glycocalyx (EG) integrity. Approach and Results- In vivo staining of murine cremaster muscle vessels with Alcian Blue 8GX provided evidence of an MPO-dependent decrease in anionic charge of the EG. MPO binding to the glycocalyx was further characterized using Chinese hamster ovary cells and its glycosaminoglycan mutants-pgsA-745 (mutant Chinese hamster ovary cells lacking heparan sulfate and chondroitin sulfate glycosaminoglycan) and pgsD-677 (mutant Chinese hamster ovary cells lacking heparan sulfate glycosaminoglycan), which revealed heparan sulfate as the main mediator of MPO binding. Further, EG integrity was assessed in terms of thickness using intravital microscopy of murine cremaster muscle. A significant reduction in EG thickness was observed on infusion of catalytically active MPO, as well as mutant inactive MPO and cationic polymer polylysine. Similar effects were also observed in wild-type mice after a local inflammatory stimulus but not in MPO-knockout mice. The reduction in EG thickness was reversed after removal of vessel-bound MPO, suggesting a possible physical collapse of the EG. Last, experiments with in vivo neutrophil depletion revealed that MPO also induced neutrophil-mediated shedding of the EG core protein, Sdc1 (syndecan-1). Conclusions- These findings provide evidence that MPO, via ionic interaction with heparan sulfate side chains, can cause neutrophil-dependent Sdc1 shedding and collapse of the EG structure.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

3 Bio Entities

Trail: Publication

0 Expression