|  Help  |  About  |  Contact Us

Publication : Chondrocyte-specific knockout of the G protein G(s)alpha leads to epiphyseal and growth plate abnormalities and ectopic chondrocyte formation.

First Author  Sakamoto A Year  2005
Journal  J Bone Miner Res Volume  20
Issue  4 Pages  663-71
PubMed ID  15765186 Mgi Jnum  J:97230
Mgi Id  MGI:3574970 Doi  10.1359/JBMR.041210
Citation  Sakamoto A, et al. (2005) Chondrocyte-Specific Knockout of the G Protein G(s)alpha Leads to Epiphyseal and Growth Plate Abnormalities and Ectopic Chondrocyte Formation. J Bone Miner Res 20(4):663-71
abstractText  G(s)alpha is a ubiquitously expressed G protein alpha-subunit that couples receptors to adenylyl cyclase. Mice with chondrocyte-specific ablation of the G(s)alpha gene had severe epiphyseal and growth plate abnormalities and ectopic cartilage formation within the metaphyseal region of the tibia. These results show that G(s)alpha negatively regulates chondrocyte differentiation and is the critical signaling mediator of the PTH/PTH-rP receptor in growth plate chondrocytes. INTRODUCTION: G(s)alpha is a ubiquitously expressed G protein alpha-subunit that mediates signaling through G protein-coupled receptors to activate the cAMP/protein kinase A signaling pathway. Although studies suggest an important role for G(s)alpha in regulating growth plate development, direct in vivo results examining this role are lacking. MATERIALS AND METHODS: The G(s)alpha gene was ablated in murine cartilage by mating mice with loxP sites surrounding the G(s)alpha promoter and first exon with collagen 2a1 promoter-Cre recombinase transgenic mice. Skeletal tissues were studied by gross and microscopic pathology, and gene expression was determined by in situ hybridization. RESULTS AND CONCLUSIONS: Mice with complete chondrocyte-specific G(s)alpha deficiency (homozygotes) died within minutes after birth and had severe epiphyseal and growth plate defects with shortening of the proliferative zone and accelerated hypertrophic differentiation of growth plate chondrocytes, a phenotype similar to that of PTH/PTH-related peptide (PTHrP) receptor knockout mice. Indian hedgehog and PTH/PTHrP receptor expression in prehypertrophic chondrocytes was unaffected in mutant mice. PTHrP expression in periarticular cartilage was increased in the mutant mice, probably because of the closer proximity of Ihh-secreting chondrocytes to the periarticular zone. In addition, these mice developed ectopic cartilage at the anterior side of the metaphyseal region in the tibia. Mice with partial G(s)alpha deficiency (heterozygotes) exhibited no phenotype. These results show that G(s)alpha negatively regulates chondrocyte differentiation and is the critical signaling mediator of the PTH/PTHrP receptor in epiphyseal and growth plate chondrocytes.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression