|  Help  |  About  |  Contact Us

Publication : EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy.

First Author  Li M Year  2016
Journal  Stem Cell Reports Volume  6
Issue  3 Pages  396-410
PubMed ID  26905199 Mgi Jnum  J:301660
Mgi Id  MGI:6506877 Doi  10.1016/j.stemcr.2016.01.011
Citation  Li M, et al. (2016) EVA1A/TMEM166 Regulates Embryonic Neurogenesis by Autophagy. Stem Cell Reports 6(3):396-410
abstractText  Self-renewal and differentiation of neural stem cells is essential for embryonic neurogenesis, which is associated with cell autophagy. However, the mechanism by which autophagy regulates neurogenesis remains undefined. Here, we show that Eva1a/Tmem166, an autophagy-related gene, regulates neural stem cell self-renewal and differentiation. Eva1a depletion impaired the generation of newborn neurons, both in vivo and in vitro. Conversely, overexpression of EVA1A enhanced newborn neuron generation and maturation. Moreover, Eva1a depletion activated the PIK3CA-AKT axis, leading to the activation of the mammalian target of rapamycin and the subsequent inhibition of autophagy. Furthermore, addition of methylpyruvate to the culture during neural stem cell differentiation rescued the defective embryonic neurogenesis induced by Eva1a depletion, suggesting that energy availability is a significant factor in embryonic neurogenesis. Collectively, these data demonstrated that EVA1A regulates embryonic neurogenesis by modulating autophagy. Our results have potential implications for understanding the pathogenesis of neurodevelopmental disorders caused by autophagy dysregulation.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Authors

21 Bio Entities

Trail: Publication

0 Expression