|  Help  |  About  |  Contact Us

Publication : Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy.

First Author  Liu L Year  2014
Journal  Diabetes Volume  63
Issue  7 Pages  2320-31
PubMed ID  24622797 Mgi Jnum  J:229489
Mgi Id  MGI:5752114 Doi  10.2337/db13-0729
Citation  Liu L, et al. (2014) Adipose-specific knockout of SEIPIN/BSCL2 results in progressive lipodystrophy. Diabetes 63(7):2320-31
abstractText  Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2) is the most severe form of human lipodystrophy, characterized by an almost complete loss of adipose tissue and severe insulin resistance. BSCL2 is caused by loss-of-function mutations in the BSCL2/SEIPIN gene, which is upregulated during adipogenesis and abundantly expressed in the adipose tissue. The physiological function of SEIPIN in mature adipocytes, however, remains to be elucidated. Here, we generated adipose-specific Seipin knockout (ASKO) mice, which exhibit adipocyte hypertrophy with enlarged lipid droplets, reduced lipolysis, adipose tissue inflammation, progressive loss of white and brown adipose tissue, insulin resistance, and hepatic steatosis. Lipidomic and microarray analyses revealed accumulation/imbalance of lipid species, including ceramides, in ASKO adipose tissue as well as increased endoplasmic reticulum stress. Interestingly, the ASKO mice almost completely phenocopy the fat-specific peroxisome proliferator-activated receptor-gamma (Ppargamma) knockout (FKO-gamma) mice. Rosiglitazone treatment significantly improved a number of metabolic parameters of the ASKO mice, including insulin sensitivity. Our results therefore demonstrate a critical role of SEIPIN in maintaining lipid homeostasis and function of adipocytes and reveal an intimate relationship between SEIPIN and PPAR-gamma.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

6 Bio Entities

Trail: Publication

0 Expression