|  Help  |  About  |  Contact Us

Publication : Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation.

First Author  Oblander SA Year  2005
Journal  Dev Biol Volume  277
Issue  1 Pages  255-69
PubMed ID  15572153 Mgi Jnum  J:95881
Mgi Id  MGI:3527919 Doi  10.1016/j.ydbio.2004.09.033
Citation  Oblander SA, et al. (2005) Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev Biol 277(1):255-69
abstractText  Membrane type 1-matrix metalloprotease (MT1-MMP or MMP-14) is a major activator of pro-MMP-2 and is essential for skeletal development. We show here that it is required for branching morphogenesis of the submandibular gland but not the lung. Instead, in the lung, it is essential for postnatal development of alveolar septae. Lung development in Mmp14-/- mice is arrested at the prealveolar stage with compensatory hyperinflation of immature saccules. Mmp2-/- mice lacked comparable defects in the lung and submandibular gland, suggesting that MT1-MMP acts via mechanisms independent of pro-MMP-2 activation. Since the developmental defects in the lung are first manifest around the time of initial vascularization (E16.5), we investigated the behavior of pulmonary endothelial cells from Mmp14+/+ and Mmp14-/- mice. Endothelial cells from lungs of 1-week-old Mmp14-/- mice show reduced migration and formation of three-dimensional structures on Matrigel. Since pulmonary septal development requires capillary growth, the underlying mechanism of pulmonary hypoplasia in Mmp14-/- mice may be defective angiogenesis, supporting a model in which angiogenesis is a critical rate-limiting step for acquisition of pulmonary parenchymal mass.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression