|  Help  |  About  |  Contact Us

Publication : Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis.

First Author  Osborn SL Year  2010
Journal  Proc Natl Acad Sci U S A Volume  107
Issue  29 Pages  13034-9
PubMed ID  20615958 Mgi Jnum  J:162312
Mgi Id  MGI:4818700 Doi  10.1073/pnas.1005997107
Citation  Osborn SL, et al. (2010) Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc Natl Acad Sci U S A 107(29):13034-9
abstractText  Cell death is an important mechanism to limit uncontrolled T-cell expansion during immune responses. Given the role of death-receptor adapter protein Fas-associated death domain (FADD) in apoptosis, it is intriguing that T-cell receptor (TCR)-induced proliferation is blocked in FADD-defective T cells. Necroptosis is an alternate form of death that can be induced by death receptors and is linked to autophagy. It requires the death domain-containing kinase RIP1 and, in certain instances, RIP3. FADD and its apoptotic partner, Caspase-8, have also been implicated in necroptosis. To accurately assess the role of FADD in mature T-cell proliferation and death, we generated a conditional T-cell-specific FADD knockout mouse strain. The T cells of these mice develop normally, but lack FADD at the mature stage. FADD-deficient T cells respond poorly to TCR triggering, exhibit slow cell cycle entry, and fail to expand over time. We find that programmed necrosis occurs during the late stage of normal T-cell proliferation and that this process is greatly amplified in FADD-deficient T cells. Inhibition of necroptosis using an inhibitor of RIP1 kinase activity rescues the FADD knockout proliferative defect. However, TCR-induced necroptosis did not appear to require autophagy or involve RIP3. Consistent with their defective CD8 T-cell response, these mice succumb to Toxoplasma gondii infection more readily than wild-type mice. We conclude that FADD constitutes a mechanism to keep TCR-induced programmed necrotic signaling in check during early phases of T-cell clonal expansion.
Quick Links:
 
Quick Links:
 

Expression

Publication --> Expression annotations

 

Other

10 Bio Entities

Trail: Publication

0 Expression