First Author | Ricker E | Year | 2020 |
Journal | J Clin Invest | Volume | 130 |
Issue | 7 | Pages | 3654-3670 |
PubMed ID | 32229726 | Mgi Jnum | J:301898 |
Mgi Id | MGI:6507300 | Doi | 10.1172/JCI132414 |
Citation | Ricker E, et al. (2020) Serine-threonine kinase ROCK2 regulates germinal center B cell positioning and cholesterol biosynthesis. J Clin Invest 130(7):3654-3670 |
abstractText | Germinal center (GC) responses require B cells to respond to a dynamic set of intercellular and microenvironmental signals that instruct B cell positioning, differentiation, and metabolic reprogramming. RHO-associated coiled-coil-containing protein kinase 2 (ROCK2), a serine-threonine kinase that can be therapeutically targeted by ROCK inhibitors or statins, is a key downstream effector of RHOA GTPases. Although RHOA-mediated pathways are emerging as critical regulators of GC responses, the role of ROCK2 in B cells is unknown. Here, we found that ROCK2 was activated in response to key T cell signals like CD40 and IL-21 and that it regulated GC formation and maintenance. RNA-Seq analyses revealed that ROCK2 controlled a unique transcriptional program in GC B cells that promoted optimal GC polarization and cholesterol biosynthesis. ROCK2 regulated this program by restraining AKT activation and subsequently enhancing FOXO1 activity. ATAC-Seq (assay for transposase-accessible chromatin with high-throughput sequencing) and biochemical analyses revealed that the effects of ROCK2 on cholesterol biosynthesis were instead mediated via a novel mechanism. ROCK2 directly phosphorylated interferon regulatory factor 8 (IRF8), a crucial mediator of GC responses, and promoted its interaction with sterol regulatory element-binding transcription factor 2 (SREBP2) at key regulatory regions controlling the expression of cholesterol biosynthetic enzymes, resulting in optimal recruitment of SREBP2 at these sites. These findings thus uncover ROCK2 as a multifaceted and therapeutically targetable regulator of GC responses. |